
White Paper Report

Report ID: 106511

Application Number: HD5155912

Project Director: George Williams (GWilliams@uscupstate.edu)

Institution: University of South Carolina Research Foundation

Reporting Period: 9/1/2012-8/31/2013

Report Due: 11/30/2013

Date Submitted: 3/12/2014

Making the Digital Humanities More Open
September 2013

Project Directors: George H. Williams and Jennifer Guiliano
Project #: HD-51559-12
Term Length: 1 September 2012 - 31 August 2013
White Paper Authors: James Smith, Cory Bohen
License: Creative Commons Attribution 3.0 Unported (CC-BY)
http://creativecommons.org/licenses/by/3.0/deed.en_US

Summary: The BrailleSC project received Level 2 startup funding ($49,339) to
undertake its second stage of development by designing and deploying a
WordPress-based accessibility tool designed to create braille content for endusers
who are blind or low vision.

1. Project Overview

Funded by a Level 2 Digital Humanities Start-Up Grant, the BrailleSC.org project
undertook its second stage of development by designing and deploying a WordPress-
based accessibility tool enabling end users with a variety of disabilities and abilities to
experience and contribute to online resources. Specifically, the project extended the use
of Anthologize, a free and open source plugin for WordPress that translates WordPress
text into PDF, ePub, and TEI, to include conversion of text to Braille, both SimBraille and
a format suitable for embossing. As part of the same work, the project provided the
tools for making Braille available visually through the WordPress interface.

This white paper provides an overview of the project, identifies areas for improvement
and lessons learned, and outlines possible next steps. An appendix includes much of the
documentation on the Braille formats and using LibLouis from PHP as compiled during
the course of the project.

All software constructed during this project is available for free and as open-source
code. The WordPress plugin is also published in the WordPress plugin index and
available for installation from within the WordPress administrative interface.

Our project is a collaboration among scholars from two different institutions—the
University of South Carolina Upstate and the University of Maryland, College Park—and
from a variety of disciplines:

● George Williams, the project director, is an associate professor of English at the
University of South Carolina Upstate who acted as project coordinator and
facilitator.

● Tina Herzberg, associate professor of education and director of the Special
Education–Visual Impairment Program at the University of South Carolina Upstate,
provided feedback on the correctness of the Braille translations of sample English
text.

● Jennifer Guiliano, assistant director of the Maryland Institute for Technology in the
Humanities (MITH) at the University of Maryland, College Park, acted as liason
between the Upstate project members and MITH, which provided the technical
development.

● James Smith, software architect of the Maryland Institute for Technology in the
Humanities (MITH) at the University of Maryland, College Park, provided oversight
of the technical development process.

● Cory Bohon, an independent developer, coded the LibLouis remote web service and

the PHP libraries for accessing the LibLouis software.
● Amanda Visconti, graduate student in English at the University of Maryland and

webmaster for the Maryland Institute for Technology in the Humanities (MITH) (at
the time of the project work), developed the WordPress plugin framework.

2. Project Activities

The primary project activities consisted of building a WordPress plugin that provided a
Braille translation option for Anthologize and a Braille translation service that would
allow the WordPress plugin to provide the translation without requiring the
administrator of the WordPress site to also install the LibLouis Braille translation
library. The project successfully completed both activities with limited success: the
WordPress plugin is available and works as planned, but the translation service may
not be written suitably for deployment as a public service available to everyone who
might use the WordPress plugin.

Due to the loss of one of the developers at MITH, we hired on a part-time basis an
outside contract developer to write the PHP libraries and Braille to English translation
service. We had our in-house, part time website developer write the WordPress plugin.

We employed an agile development methodology which focused on ensuring the
completion of the highest priority objectives: allowing the Braille translation of content
produced through the Anthologize WordPress plugin. A secondary priority was
providing a publicly accessible translation service. We also used a layered approach in
which we built several relatively self-contained components that together allowed us to
achieve our primary objective.

Instead of writing an Anthologize plugin directly, we chose to create a WordPress
plugin that would allow the translation of selected parts of a WordPress website. This
allowed us to test the translation services without going through the Anthologize
plugin. Building a WordPress plugin first also made for an easier development target for
our junior developers.

We designed the WordPress plugin to work with the LibLouis Braille to English
translation software. This software is not written in PHP, so we had to write a PHP
library that could interface with the command line tool provided by the LibLouis
package. Because we knew that we wanted to allow the WordPress plugin to work
without requiring the installation of LibLouis on the same server as the WordPress site,
we developed a second PHP library that had the same interface as the first, but would
use a remote web service to provide the translation. The WordPress plugin was
designed to work with either library with the selection made through the settings page.

The remote service was written using the Sinatra framework
(http://www.sinatrarb.com/) designed for easily and quickly building web services in
Ruby. Sinatra-based web services are more scalable than other alternatives, such as CGI
scripts, but require more attentive tuning when used as the basis for publicly available
web services. See the Evaluation section below for more information on how we intend
to address the scalability of this service.

After building the WordPress plugin and ensuring that it could translate English text
into Braille using the remote web service, we added the capability for the WordPress
plugin to detect the Anthologize plugin and provide a Braille output format for
Anthologize. This output format uses the same local or remote translation service as
configured in the Braille WordPress plugin settings.

3. Accomplishments

The project aimed to impact several areas of web development and scholarly projects:
increase participation by all people in experiencing and creating scholarly digital
projects, provide correctly formatted Braille to provide clarity to the reader and allow
the Braille reader to easily navigate the materials, and provide free online Braille
translation services to the public. All of these goals were met to some degree.

We were able to provide a WordPress plugin that interfaces with Anthologize to
provide Braille output as SimBraille for display or in the embossing format used to
produced embossed versions of the text. The WordPress plugin and Anthologize
integration provide opportunities for increased participation by providing a Braille
translation of WordPress content in several forms, though the configuration and
provisioning of the WordPress plugin requires access to non-Braille forms of the
WordPress administrative interface.

The Braille translation provided by the WordPress plugin and the English to Braille
translation service is dependent on the correctness of the translation provided by the
LibLouis software. We have noted a few problems in translating highly formatted or
typographically complex text in the Evaluation section below.

We produced a English to Braille translation service as open source software that can
be installed by anyone with access to a Unix system, though the LibLouis software used
to provide the translations is easier to install on some systems than others based on in-
house experience. We did all of our testing and development in Apple OS X and Ubuntu
Linux environments without any problems installing all of the required software. As a
result of the in-house evaluation of this service, we plan to rewrite parts of the
translation service so that we can offer a publicly available translation service that

http://www.sinatrarb.com/

doesn’t require significant server tuning.

4. Audiences

The project addressed several different audiences with its products. The primary
audience, of course, is the reader of the Braille, but secondary audiences include the
WordPress site administrator and content providers.

The primary audience of the project is the Braille reader. The resulting Braille is
twofold: the SimBraille equivalent using Unicode code points is designed for a sighted
audience learning Braille or reviewing the Braille translation on a display surface; the
embossable Braille output is designed for embossing on paper or other interface
designed for tactile sensing that can be read by anyone familiar with embossed Braille.

The secondary audience of the project, and the primary audience of the WordPress
plugin as an interactive object is the WordPress site administrator. The settings and the
Anthologize output format are designed to be used by someone who is already able to
interact with the rest of the administrative parts of a WordPress site with Anthologize.
The plugin is distributed in the same manner as any other WordPress plugin, allowing
any site administrator to install the plugin through the WordPress administrative
interface. Configuration of the plugin allows the site to use a locally installed copy of the
LibLouis software or, in hosting configurations that do not allow local installation of
additional software, configuration of a remote service that provides access to the
LibLouis software.

5. Evaluation

We have not sought outside evaluation of the work products. However, in-house
evaluation by developers not involved in the work has led to a few opportunities for
improvement.

WordPress Plugin
The WordPress plugin provides access to all of the functionality required to provide an
English to Braille translation of Anthologize projects and material within a WordPress
site. However, the plugin does not allow selection of the language of the text (it assumes
that the text is English text) or the ability to restrict access to a remote translation
service by means of an API key or similar restriction. Both of these are being considered
for future versions of the plugin and service.

Since publishing the WordPress plugin, it has been downloaded 97 times as of
Thursday, 5 September 2013.

English to Braille Translation Service
The original grant stipulated that the English to Braille translation web service would
be written in PHP. However, we were uncomfortable with this and chose to write it in
Ruby instead using the Sinatra framework (http://www.sinatrarb.com/). This
translation web service is sufficient to support small web sites such as a personal blog
or a Moodle installation supporting a small number of courses. As written, the web
service can support a few tens of thousands of requests a day. The MITH staff involved
in the evaluation did not consider this sufficient for building a general-access, public
service, so we are not offering such a service.1 As a result of this evaluation, we plan to
create a version of the web service that is acceptable to MITH staff so that we can offer
the service to the public.

Service Scalability
The primary problem in building the service using Sinatra and LibLouis is the lack of
bindings allowing the use of the LibLouis software from within the Ruby environment.
Instead, we must execute a separate program for each requested translation, resulting
in a substantial amount of overhead that limits the scalability of the service. Rewriting
the service in Scala, a language that compiles to the Java virtual machine (JVM), allows
the service to use the LibLouis software directly by including the software in the same
program that processes the translation requests from the WordPress plugin.

Translation Effectiveness
The translation service uses LibLouis to provide the actual translation using the proper
mode for English text. This mode works well with simple ASCII text, but fails when
encountering typographical elements expressed in Unicode, such as m-dashes. There is
no easy way to discern mathematical text from non-mathematical text, so certain
conventions in mathematical Braille might not be observed. Rendering lists in Braille
may also pose some formatting issues.

Overall, the translation service provides a good quality rendering in Braille of narrative
English text. Advanced typography and non-narrative formatting tend to present
problems for the translation process provided by the LibLouis software.

6. Continuation of the Project

In addition to future grant-funded projects, the software produced during the work has

1 It is worth noting that the result of this evaluation is not dependent on the implementation language of
the service: whether the service was written in PHP as stipulated in the grant or in Ruby as actually
written, the service would be using the LibLouis software in a way that would result in the perceived
weakness surfaced by the evaluation.

been used to provide a Moodle filter that allows questions for students and other
content to include SimBraille.

7. Long Term Impact

The WordPress plugin and other software produced as part of the work laid the
foundation for further accessibility work at MITH. For example, we are developing a
jQuery plugin that can support 6-key input, allowing web forms to have text fields that
allow SimBraille input. This software becoming more widely known and used will allow
Braille to become a more commonly supported input and display form.

Additionally, the availability of a WordPress plugin removes a reason for WordPress
sites not to provide a Braille translation of content, especially in an educational context.
Sites that use Anthologize are able to produce Braille versions of their content with
little additional effort.

8. Grant Products

The work resulted in the following software:

● A WordPress plugin providing Braille translation of English text. This plugin also
provides a SimBraille and embossable file translation of English text for Anthologize,
a WordPress plugin that allows the aggregation of WordPress content in the form of
a book. The Braille plugin is available at http://wordpress.org/plugins/braille/.

● A set of PHP libraries for interacting with the English to Braille translation service as
well as a locally installed copy of the LibLouis software. These PHP libraries have
been used in a Moodle filter and can be used in other web site systems such as
Drupal. These libraries are available at https://github.com/umd-
mith/braille/tree/master.

● An example English to Braille translation web service. The source code for this
service is available at https://github.com/umd-mith/braille/tree/master/remote-
liblouis. This service is relatively easy to set up and run on an Ubuntu Linux server
such as one running through the Amazon EC2 cloud server environment.

9. Lessons Learned

In the course of the work and its evaluation, we learned the following takeaways that
will inform any future work that we do. Additional documentation has been added as
Appendix B that shares the research into how Braille is represented in a computer and
how to use the LibLouis translation software.

http://wordpress.org/plugins/braille/
https://github.com/umd-mith/braille/tree/master
https://github.com/umd-mith/braille/tree/master
https://github.com/umd-mith/braille/tree/master/remote-liblouis
https://github.com/umd-mith/braille/tree/master/remote-liblouis

● Sinatra allows for rapid development, but does not allow simple scaling for wide
public use of the resulting service, especially when we must call a separate program
to perform the work represented by the web request to the sinatra framework.

● The text provided to the LibLouis software needs to be cleaner than is obvious from
the claim that the software can process HTML. Automated translation has limits that
become apparent when translating complex text. As a result, we need to manage
expectations while we find ways to improve the translation process and results.

Appendix A. Development Calendar

Github Setup (1 - 12 Oct) [Jim]
Setup github repository supporting BrailleSC work, especially with Wordpress Plugin
and related sub-projects.

Library Requirements (1 - 19 Oct) [Cory]
Research LibLouie and PHP to see how the two might be able to work together to
produce English-to-Braille translations in a web environment, preferably using UTF-8
instead of alternate typefaces.

Local LibLouie (22 Oct - 21 Dec) [Cory]
Create a PHP library that allows WordPress to use LibLouie without calling out to a
remote service. The library should have a sufficiently flexible API to provide access to
the affordances surfaced in the previous research milestone. This library will be used in
subsequent milestones by Amanda as she develops the Wordpress plugin proper.

The PHP library should be a standalone package that can be installed on a system and
used outside of WordPress.

Wordpress Plugin Requirements (29 Oct - 2 Nov) [Amanda]
Research how Anthologize works, how WordPress plugins are designed, and how a
WordPress plugin can modify the Anthologize output formats. Install a practice
WordPress plugin as a test to create the skeleton for the plugin to built later.

Wordpress Plugin Presentation (5 Nov - 7 Dec) [Amanda]
Produce a basic text filter for WordPress. This will form the core of the plugin and
testing as we incorporate the Braille output format into Anthologize.

Remote Library Requirements (14 Jan - 1 Feb) [Cory]
Create an Ubuntu server for development/testing and create a basic Sinatra application.
Research calling out to the shell securely from Ruby.

Wordpress Plugin Configuration (11 Feb - 8 Mar) [Jim]
Create the various administrative settings needed to configure the WordPress plugin.

Remote LibLouie (4 Feb - 8 Mar) [Cory]
Create the remote service software that provides access to the LibLouie software as a
web service.

Local/Remote LibLouie and Wordpress (11 Mar - 19 Apr) [Cory & Jim]
Test the WordPress plugin and ensure that it can be configured to work with the
LibLouis software installed locally as well as the remote service.

Plugin Publication (22 Apr - 31 May) [Jim & Cory]
Publish the WordPress plugin to the WordPress plugin repository and index.

Appendix B: Research Documentation

The material in this appendix is from documentation compiled by Cory Bohon as part of
the Library Requirements milestone.

.BRL and .BRF Files
The file type represents the braille in their Braille ASCII values.2 The file extension can
be either .BRL or .BRF (formatted braille). There is also a third file type called .dxb (DBT
file), which is a proprietary file from Duxbury’s (free) Perky Duck braille editing
program.3 You can open .brf and .brl files inside of Perky Duck and other Duxbury
products to send the content to an embosser.

With braille, there are many ways to represent the code. Each different language
representation has more clarity in the form of dots (just as you have more clarity with
the higher number of bits to represent data in a file structure). In America, there are
two basic versions of English Braille: Uncontracted letters, numbers and symbols; and,
Contracted (or Grade 2) Braille that uses dots to represent common combinations of
some letters.

It appears that the .brf file is the
most commonly used to represent
braille, especially as how the .brl
type is already used for a CAD
model file type. I think we should
stick with using the .brf file type for
this use.

The .brf file can be directly opened
by many proprietary and open
source applications to be sent to an
embosser.4

2 http://en.wikipedia.org/wiki/Braille_ASCII

3 http://www.duxburysystems.com/product2.asp?product=Perky%20Duck&level=free&action=pur

4 See http://www.tsbvi.edu/braille-resources/3187-help-downloading-and-embossing-files for an
example of how to emboss .BRF files.

http://www.duxburysystems.com/product2.asp?product=Perky%20Duck&level=free&action=pur
http://www.duxburysystems.com/product2.asp?product=Perky%20Duck&level=free&action=pur
http://www.tsbvi.edu/braille-resources/3187-help-downloading-and-embossing-files

How Letters are Represented in Braille

Uncontracted Braille

Uncontracted braille is the most simple braille structure because it simply just spells
out the letters of words in a one-to-one fashion seen below.

Contracted Braille

Contracted braille allows for better representation of common letters and words that
appear more frequently in writing. For instance, it has special combinations of dots to
represent “for,” “and,” and “-ing.” This allows for shortened writing, and faster reading
times than the uncontracted version of braille. When learning braille, educators often
teach the uncontracted braille first, before moving on to the contracted version.5

Nemeth Code

The Nemeth Code is used to represent mathematical and scientific notation and
symbols.6

Computer Braille

With the standard braille above, only 6 dots in a cell is used to represent most of the
combinations in both contracted and uncontracted braille. However, with the
adaptation of new symbols on the computer, another row of dots was added to make an
eight-dot braille cell known as “Computer Braille.” With this style of braille, there are
256 different combinations that are assigned to the 256 characters of ASCII coding.

ASCII Braille

Below is the complete Braille ASCII table as published on Wikipedia.7 “In spite of
originally being known as the North American Braille ASCII, it is now used
internationally.” It is a subset of the ASCII character set, which uses 64 of the printable
ASCII characters to represent all possible dot combinations in six-dot Braille. Only 64
characters are needed to represent all possible combinations of 6 dots Braille (including
space), so not all ASCII values are needed for Braille ASCII.

5 http://curiosity.discovery.com/question/what-contracted-uncontracted-braille

6 http://en.wikipedia.org/wiki/Nemeth_Code

7 http://en.wikipedia.org/wiki/Braille_ASCII

http://en.wikipedia.org/wiki/Braille_ASCII

System Calls in PHP

Online Resources
● PHP Manual: system(): http://php.net/manual/en/function.system.php
● PHP Manual: exec(): http://www.php.net/manual/en/function.exec.php
● PHP: Program Execution: http://us2.php.net/manual/en/book.exec.php

System()

Execute an external program and display the output. Lets you make a system call from
within your PHP code block to perform a system command.

$commandToRun = “command to run here”;
$returnValue = “”;
$last_line = system($commandToRun, $returnValue);

The variable $commandToRun is a string value containing the command that will be
executed by the system. $last_line contains the last line of output that was returned
from the command being run. $returnValue contains the return value of the shell
command.

Note: The system() call also tries to automatically flush the web server's output
buffer after each line of output if PHP is running as a server module. If a program is
started with this function, in order for it to continue running in the background, the
output of the program must be redirected to a file or another output stream. Failing to
do so will cause PHP to hang until the execution of the program ends.

Exec()

The exec() call will execute an external system program.

$commandToBeRun = “command to run here”;
$output = array();
$return_var = 0;
exec($commandToBeRun, $output, $return_var);

http://php.net/manual/en/function.system.php
http://www.php.net/manual/en/function.exec.php
http://us2.php.net/manual/en/book.exec.php

Note: The last line from the result of the
command. If you need to execute a
command and have all the data from
the command passed directly back
without any interference, use
the passthru() function.To get the
output of the executed command, be
sure to set and use the output
parameter.

Basic Structure for xml2brl System Call

To the side is a flowchart describing
how to go about a system call to
implement xml2brl in PHP.

XML2BRL
The final WordPress plugin and
translation service uses the command
line program “file2brl” instead of
“xml2brl”, but the pattern is the same
as presented in this research
documentation. The initial plan was to
use “xml2brl.” Both command line tools
are provided by the same open source project.

Installing xml2brl

xml2brl (or liblouisxml) is part of the LibLouis package and can be installed on the
following systems. The library is intended to provide complete braille transcription
services for xml documents. It translates into appropriate braille codes and formats
according to its style sheet and the specifications in the document. A command-line
program, xml2brl which uses this library is also included. The latest version of liblouis8
is required.

Ubuntu *nix variants with apt-get

8 https://code.google.com/p/liblouis/

http://us2.php.net/manual/en/function.passthru.php

sudo apt-get install liblousxml-bin

Mac OS X

Download: http://code.google.com/p/liblouis/

Download: http://code.google.com/p/liblouisxml/

(or with Mac Ports):9

sudo port install liblousxml

Background on xml2brl

xml2brl can translate an xml or a text file into an embosser-ready braille file. This
includes translation into grade two, if desired, mathematical codes, etc. It also includes
formatting according to a built-in stylesheet which can be modified by the user.

xml2brl Input

Input can range from an xml file to an html file to a plain text file. The basic format for
using the xml2brl command is:

xml2brl file.txt
xml2brl file.xml
xml2brl -t file.html //html, not an xhtml document

If the document is poorly formatted, then you can use the following flag with the input
file:

xml2brl -p file.extension

If inputFile is not specified or ‘-’ input is taken from stdin. If outputFile is not specified,
then the output is sent to stdout.

xml2brl Options

A configuration file can be included that tells xml2brl and liblouis how to encode the
braille.10

9 http://www.macports.org/ports.php?by=name&substr=liblouis

10 http://liblouisxml.googlecode.com/svn/documentation/liblouisxml.html#Customization-Configuring-
liblouisxml

http://code.google.com/p/liblouis/
http://code.google.com/p/liblouisxml/

xml2brl Output

Depending on the options configuration, the output file (or standard out output) will
either be ASCII or Unicode Braille. As described in the .brf/.brl file research above,
Braille ASCII is the typical way of encoding text, but Unicode can also be used as a way
of encoding 8-dot (computer) braille.

Testing the xml2brl output

When we used the example that James put together, the xml2brl translation service
gave back the following code:

 ,? is fun66

Using this example, we can see that the xml2brl service is properly decoding and
translating the ASCII text into it’s Braille ASCII representation. The Braille ASCII
representation is actually using contracted braille to represent the text in a more
compacted form.

If we look at the ASCII representation in braille, we get the following:

The first character, a “,” in ASCII means in Braille that the next character will begin with
an uppercase character. In this case, the next letter is “th” represented by a “?” in the
Braille ASCII. This means “this” in contracted braille. The next character is a space,
followed by “is”, and another space, followed by “fun.” The last two characters are “!!”
represented as “66” in Braille ASCII.

So, if we add everything together, we get the sentence:

This is fun!!

Which is the exact text sent to the xml2brl program to encode into braille.

	1. Project Overview
	2. Project Activities
	3. Accomplishments
	4. Audiences
	5. Evaluation
	WordPress Plugin
	English to Braille Translation Service
	Service Scalability
	Translation Effectiveness

	6. Continuation of the Project
	7. Long Term Impact
	8. Grant Products
	9. Lessons Learned
	Appendix A. Development Calendar
	Github Setup (1 - 12 Oct) [Jim]
	Library Requirements (1 - 19 Oct) [Cory]
	Local LibLouie (22 Oct - 21 Dec) [Cory]
	Wordpress Plugin Requirements (29 Oct - 2 Nov) [Amanda]
	Wordpress Plugin Presentation (5 Nov - 7 Dec) [Amanda]
	Remote Library Requirements (14 Jan - 1 Feb) [Cory]
	Wordpress Plugin Configuration (11 Feb - 8 Mar) [Jim]
	Remote LibLouie (4 Feb - 8 Mar) [Cory]
	Local/Remote LibLouie and Wordpress (11 Mar - 19 Apr) [Cory & Jim]
	Plugin Publication (22 Apr - 31 May) [Jim & Cory]

	Appendix B: Research Documentation
	.BRL and .BRF Files
	How Letters are Represented in Braille
	Uncontracted Braille
	Contracted Braille
	Nemeth Code
	Computer Braille
	ASCII Braille

	System Calls in PHP
	Online Resources
	System()
	Exec()
	Basic Structure for xml2brl System Call

	XML2BRL
	Installing xml2brl
	Background on xml2brl
	xml2brl Input
	xml2brl Options
	xml2brl Output
	Testing the xml2brl output

